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   A B S T R A C T 

 

Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can differentiate into different kinds of mesenchymal cells 
such as osteoblasts, chondroblasts, and adipocytes. These cells were identified a long time ago and are considered the first discovered 
source of MSCs. BM-MSC transplantation is used to treat bone disease, myocardial infarction, stroke, and diabetes mellitus. This study aimed 
to provide a new method for the in vitro primary culture and secondary culture of BM-MSCs that is compliant with good manufacturing 
practices, for use in clinical applications. Bone marrow was aspirated from the hipbone by using special needles and syringes. Mononuclear 

cells (MNCs) were isolated from the marrow by using Ficoll-Hypaque gradient centrifugation. These MNCs were cultured in DMEM/F12 
medium supplemented with 2.5%, 5%, and 10% activated platelet rich plasma (aPRP) in the experimental groups and 10% FBS in the control 
group to obtain BM-MSCs. The results showed that aPRP could be replaced with FBS for isolation and proliferation of BM-MSCs. BM-MSCs 
cultured in both DMEM/F12 medium supplemented with aPRP and DMEM/F12 medium supplemented with FBS exhibited the characteristic 
phenotype of MSCs, such as being positive for CD44, CD73, CD90, and CD105, and being negative for CD14, CD34, CD45, and HLA-DR. 
They also successfully differentiated into adipocytes and osteoblasts. More importantly, BM-MSCs strongly proliferated in medium 
supplemented with aPRP, maintained the normal karyotype, and non-tumorigenesis in the athymic mice. Thus, this study provides an 
advanced protocol that is beneficial for the clinical applications of BM-MSCs. 
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Introduction 

Bone marrow-derived mesenchymal stem cells 
(BM-MSCs) have long been used in both preclinical and 
clinical studies. BM-MSCs were first discovered by 
Friedenstein in 1968 (Friedenstein et al., 1968). Based on 
the first demonstration by Friedenstein, these cells were 
also seen in other tissues such as umbilical cord blood 
(Pham et al., 2014), umbilical cord (Leite et al., 2014), 
adipose tissue (Van Pham et al., 2013), dental pulp (Ferro 
et al., 2014), placenta (Brooke et al., 2009), and menstrual 
blood (de Carvalho Rodrigues et al., 2012). To confirm 
which stem cells are MSCs, Dominici et al. (2006) 
suggested three criteria: plastic adherence when 
maintained in standard culture conditions, expression of 
CD105, CD73, and CD90 and non-expression of CD45, 
CD34, CD14, or CD11b, CD79 alpha, or CD19 and HLA-
DR, and successful differentiation into osteoblasts, 
adipocytes, and chondroblasts in vitro (Dominici et al., 
2006). 

 BM-MSCs are used to pre-clinically treat 
diseases in animal models of Alzheimer’s and 
Parkinson’s diseases (Danielyan et al., 2014; Danielyan 
et al., 2011), rheumatoid arthritis (Papadopoulou et al., 
2012), amyotrophic lateral sclerosis (Chan-Il et al., 2013), 
diabetes (Ezquer et al., 2009), etc. They are used 
clinically in humans to treat idiopathic pulmonary fibrosis 
(Chambers et al., 2014), cirrhosis (hepatocellular 
carcinoma) (Vainshtein et al., 2014), cirrhotic rats (Li et al., 
2013), autoimmune diseases (Lee et al., 2014), cartilage 
disease (Veronesi et al., 2013), etc. 

 To increase the number of BM-MSCs, BM-MSCs 
are subjected to long-term culture in vitro. However, in 
most studies, MSCs were cultured in media containing 
xenogeneic additives such as fetal bovine serum (FBS) 
(Choudhery et al., 2013; Huang et al., 2014; Odabas et 
al., 2014). These media are associated with risks such as 
prion-mediated infections, viral transmission, and adverse 
immunological reactions. However, serum-free media are 
commercially available for use in BM-MSC culture. The 

main limitations of these media are their high cost and 
complexity. In fact, when grown in serum-free media, BM-
MSCs hardly adhere to culture-flask surfaces; hence, all 
culture flasks must be pre-coated with adherent matrixes. 

 In this study, we established an animal product-
free expansion protocol by using autologous activated 
platelet rich plasma. During the procedure, all 
components of animal origin, such as trypsin, were not 
used. Thus, because this protocol is free of animal 
products, it is safe and feasible for large-scale BM-MSC 
isolation and expansion for use in clinical applications. 

 

Materials-Methods 

Bone Marrow and Peripheral Blood Collection 

The project was approved by the local ethics 
committee. Five donors participated in this study. In total, 
20 mL of bone marrow was aspirated from each donor 
after obtaining informed consent. The collection was 
performed in accordance with the standards of the local 
ethics committee. Besides BM samples, 20 mL peripheral 
blood was also collected from each donor. Both BM and 
peripheral blood were anticoagulated by using CDPA 
solution. All samples were immediately transferred to the 
laboratory.  

MNC Isolation and Activated PRP Preparation 

 Mononuclear cells (NMCs) were isolated from 
the bone marrow. The BM samples were diluted at a ratio 
of 1:1 with phosphate-buffered solution (PBS) and then 
subjected to density centrifugation using Ficoll-Hypaque 
(1.077 g/mL; Sigma-Aldrich, St Louis, MO, USA). BM 
samples were centrifuged at 3000 rpm for 30 min. MNCs 
were collected from the interphase of the centrifuge tube. 
The collected MNCs were washed twice with PBS and 
then used for further experiments. 

 Peripheral blood samples were used to produce 
activated PRP (aPRP). ACD anti-coagulated peripheral 
blood samples were centrifuged in two steps to get PRP. 
In the first step, these samples were centrifuged at 500 × g 
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for 5 min to obtain plasma. In the second step, the plasma 
samples were centrifuged at 800 × g for 10 min to obtain 
platelet pellets at the bottom of the tubes. To prepare 
aPRP, a third of the plasma volume and the platelet pellet 
was collected and re-suspended, following which 100 μL 
CaCl2 per 1 mL of PRP was added to activate growth 
factor release. The samples were then incubated at 37°C 
for 30 min or until clotting occurred.  

Primary Culture 

Primary culture was performed as described in a 
previously published study (Pham et al., 2014). Five BM 
samples were used for primary culture. MNCs were 
cultured in DMEM/F12 medium containing 1% antibiotic-
antimycotic (Sigma-Aldrich) and various concentrations of 
autologous aPRP (2%, 5%, 7%, or 10%) or 10% fetal 
bovine serum (FBS) for the control. The cells were plated 
at a density of 5�×�104cells/mL in T-75 flasks (Corning) 
and incubated at 37°C with 5% CO2. After three days of 
culture, 6 mL of fresh medium was added to each T-75 
flask. The medium was replaced with fresh medium every 
4 days until the cells reached 70–80% confluence. The 
efficiency of the media was evaluated by considering the 
time required for adherent cells to appear and reach 70–
80% confluence for the first subculture.  

Secondary Culture 

After successful primary culture, the samples 
were sub-cultured to evaluate the effects of various 
media. The proliferation rate was evaluated by the 
XCELLIgence system (Roche Applied Science, 
Indianapolis, IN, USA). A total of 1�×�103 cells were 
seeded into each well of a 96-well E-plate in triplicate. The 
culture plates were placed into the XCELLIgence system 
and incubated at 37°C in the presence of 5% CO2. Cell 
proliferation was monitored for 300 h, with the medium 
being replaced every third day. Both the cell doubling time 
and slope value were determined by a software of the 
XCELLIgence system.  

Flow Cytometry 

Cell markers were analyzed by following a 

previously published protocol. Briefly, cells were washed 
twice in PBS containing 1% bovine serum albumin 
(Sigma-Aldrich). The cells were then stained with anti-
CD13-FITC, anti-CD14-FITC, anti-CD34-FITC, anti-
CD44-PE, anti-CD45-FITC, anti-CD73-FITC, anti-CD90-
PE, anti-CD105-FITC, anti-CD106-PE, anti-CD166-PE, or 
anti-HLA-DR-FITC antibodies (all purchased from BD 
Biosciences, San Jose, CA, USA). Stained cells were 
analyzed by FACSCalibur flow cytometer (BD 
Biosciences). Isotype controls were used in all analyses.  

In Vitro Differentiation 

For differentiation into adipogenic cells, BM-
MSCs were differentiated as described previously. Briefly, 
passage five cells were plated at a density of 1�×�104 
cells/well in 24-well plates. At 70% confluence, the cells 
were cultured for 21 days in DMEM/F12 containing 
0.5 mmol/L 3-isobutyl-1-methyl-xanthine, 1 nmol/L 
dexamethasone, 0.1 mmol/L indomethacin, and 10% 
FBS (all purchased from Sigma-Aldrich). Adipogenic 
differentiation was evaluated by observing lipid droplets in 
cells, stained with Oil Red, under a microscope.  

For differentiation into osteogenic cells, BM-
MSCs were plated at a density of 1�×�104 cells/well in 24-
well plates. At 70% confluence, the cells were cultured for 
21 days in DMEM/F12F12 containing 10% FBS, 10-

7 mol/L dexamethasone, 50 μmol/L ascorbic acid-2 
phosphate, and 10 mmol/L β-glycerol phosphate (all 
purchased from Sigma-Aldrich). Osteogenic differentiation 
was confirmed by Alizarin red staining.  

Tumorigenicity Assay 

The tumorigenicity of BM-MSCs was examined 
in athymic nude mice. All manipulations of mice were 
approved by the Local Ethics Committee of Stem Cell 
Research and Application, University of Science (Ho Chi 
Minh City, Vietnam). Each mouse was injected 
subcutaneously with 5�×�106 cells (three mice per group). 
As a positive control, the mice were also injected with 
breast cancer cells at a different site. Tumor formation in 
mice was followed up for three months.  
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a product obtained from BM-MSCs, is approved as a stem 
cell drug for the treatment of graft versus host disease 
(GVHD) (Kebriaei et al., 2009; Vaes et al., 2012). In the 
clinicaltrial.gov database, there were more than 200 
registered trials with about 10 kinds of diseases that have 
been treated by BM-MSC transplantation. Therefore, 
expansion of BM-MSCs for both autologous and allogenic 
transplantation is essential for the application of stem cells 
in the treatment of diseases.   

 In this study, we successfully cultured BM-MSCs 
in xenogeneic protein-free conditions. In most previously 
published studies, BM-MSCs were cultured in media 
supplemented with FBS or FCS. FBS and FCS contained 
several xenogeneic proteins as well as infectious agents, 
including viruses and prions. Therefore, BM-MSCs could 
be contaminated with these components of bovine serum. 
After transplantation, these components could elicit an 
immune response in the recipient or transmit viruses or 
prions to cause critical diseases in human, which is riskier. 
By replacement of FBS or FCS with PRP, BM-MSCs can 
be cultured in conditions that are entirely free of bovine 
serum.  

 However, the next question to be addressed was 
whether cultivation of BM-MSCs in PRP-supplemented 
medium could cause changes in the BM-MSCs. In the 
next experiment, we evaluated the phenotype, 
differentiation potential, as well as karyotype of BM-
MSCs. BM-MSCs were cultured in PRP-supplemented 
medium well-done conserved MSC properties. Similar to 
BM-MSCs cultured in FBS medium, MSCs in PRP 
medium satisfied with minimum criteria of MSCs that 
Dominici et al. suggested in 2006 (Dominici et al., 2006). 
In fact, these cells were positive for CD44, CD73, CD90 
and CD105 and negative for CD14, CD34, CD45, and 
HLA-DR. This phenotype also agreed with that reported in 
previously published studies (Iudicone et al., 2014; 
Narbona-Carceles et al., 2014; Robey et al., 2014).  

 Although culture medium with 10% FBS 
excellently enhanced cell adherence to the flask surface in 
a manner similar to that observed in culture medium with 

10% PRP during the primary culture, during the secondary 
culture, PRP efficiently stimulated BM-MSC growth. In 
fact, at 2.5% PRP concentration in the culture medium, 
proliferation rates of BM-MSCs in both 2.5% PRP medium 
and 10% FBS medium were similar. Moreover, their 
proliferation rates were significantly different between 
10% FBS medium and 5% PRP and 10% PRP media. 
These results showed that PRP is a rich source of natural 
human growth factors. Moreover, these growth factors 
triggered BM-MSC growth. PRP also strongly stimulated 
the proliferation of MSCs that originated from other tissues 
such as umbilical cord blood (Murphy et al., 2012; Pham 
et al., 2014), adipose tissue (Atashi et al., 2014; Van 
Pham et al., 2014), and human dental stem cells (Lee et 
al., 2011). The last criterion evaluated was the 
differentiation potential of BM-MSCs into mesenchymal 
cells such as adipocytes, osteoblasts, and chondrocytes. 
The BM-MSCs cultivated in PRP medium and FBS 
medium could differentiate into adipocytes and 
osteoblasts. BM-MSCs cultured in PRP-supplemented 
medium were also found to maintain the MSC phenotype.  

  

 To satisfy the stem cells for transplantation, BM-
MSCs cultured in PRP medium were examined for 
changes in the normal karyotype and for their 
tumorigenicity. The results demonstrated that PRP did not 
affect the karyotype of BM-MSCs. At the 10th passage, 
BM-MSCs in both PRP- or FBS-supplemented media 
maintained the normal karyotypes (2n = 46). Owing to the 
normal karyotype, these cells also could not form tumors 
in the athymic mice. Considering these analysis results, 
PRP could replace FBS in BM-MSC culture and satisfy the 
criteria of MSCs used for clinical transplantation.  

 

Conclusion 

 BM-MSCs are important autologous stem cells 
for regenerative medicine. This study provided a simple 
protocol to isolate and culture BM-MSCs for clinical 
applications. Owing to supplementation with PRP, the 
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BM-MSC culture medium became free of xenogeneic 
proteins, foreign viruses, and other infectious agents. 
Similar to BM-MSC cultured in FBS-supplemented 
medium, BM-MSCs cultured in PRP-supplemented 
medium maintained their phenotype, differentiation 
potential, as well as conserved their normal karyotype 
after 10 passages and did not form tumors in mice. This 
study also suggested that BM-MSCs could be cultured in 
a medium supplemented with 2.5% PRP. Considering 
these results, expanded BM-MSCs can satisfy the criteria 
underlying good manufacturing practice standards for 
clinical usage.  
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